

Governing Open-Vocabulary Data Leaks using an Edge LLM through Programming by Example

Qiyu Li Jinhe Wen Haojian Jin

UC San Diego

Problem

Data Leak in ChatGPT Prompts

TECH

Amazon, Apple, and 12 other major companies that have restricted employees from using ChatGPT

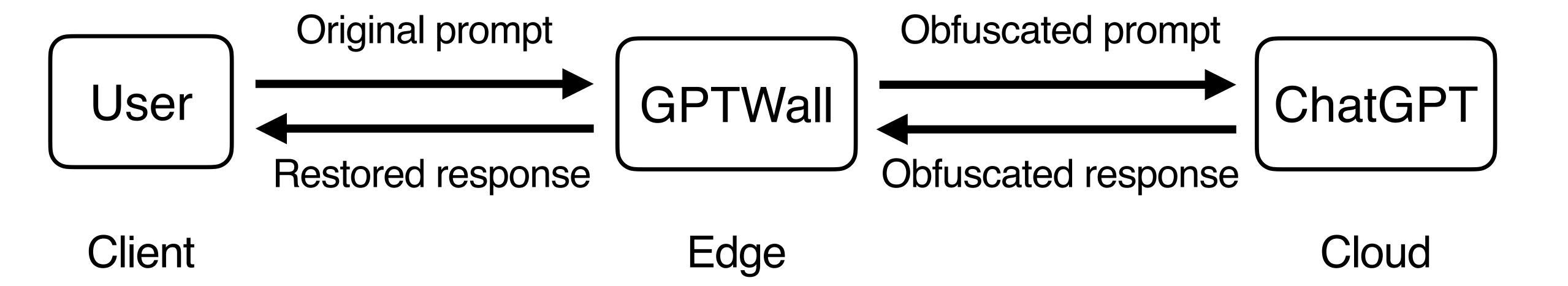
BREAKING | BUSINESS

Samsung Bans ChatGPT Among Employees After Sensitive Code Leak

Employees are accidentally leaking company data through ChatGPT, report warns

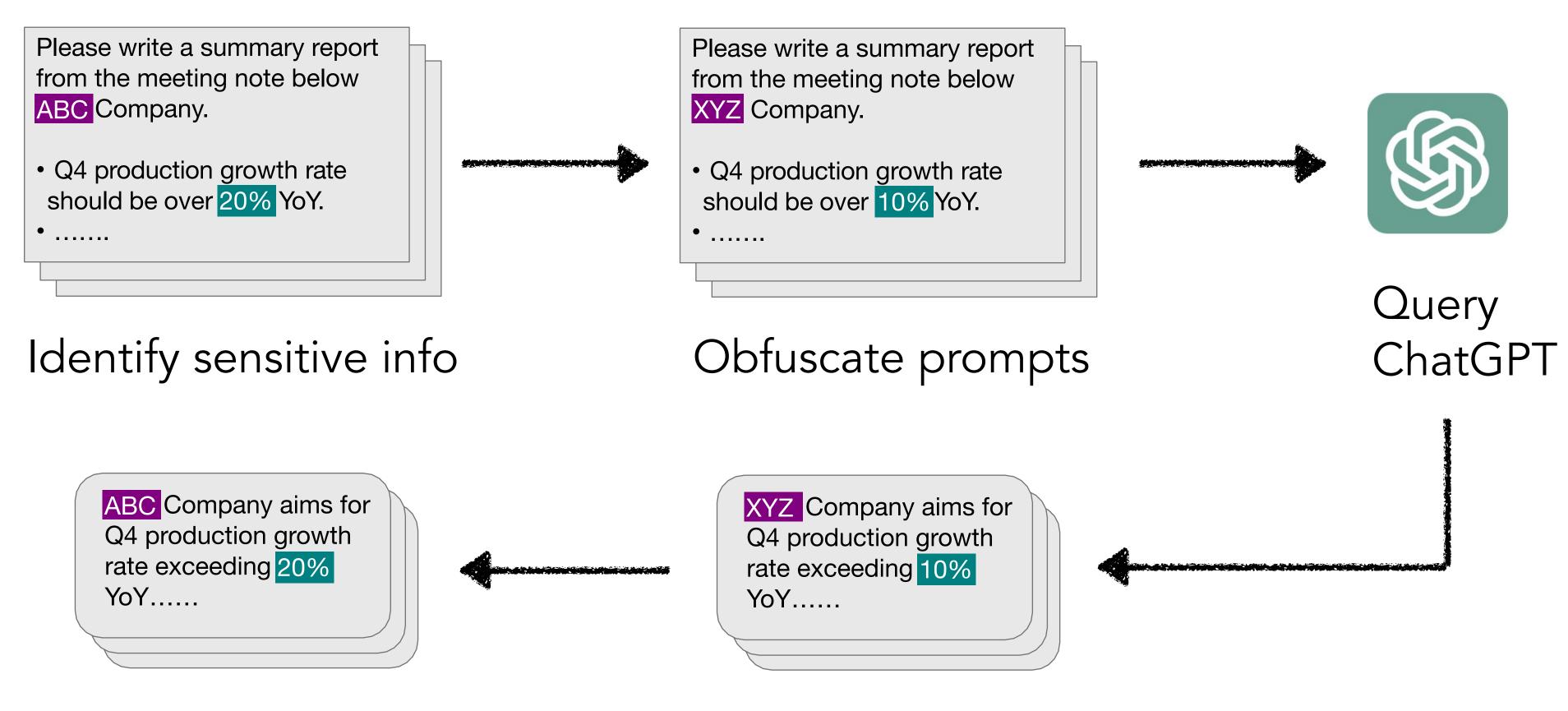
A new Cyera report reveals ChatGPT, Microsoft Copilot, and other AI tools are now the leading source of workplace data leaks, often occurring without companies noticing.

GPTWall: A Privacy Firewall for Mitigating ChatGPT Data Leaks



Example Data Flow

Policy: Replace company name with synthetic values; Add noise to financial figure

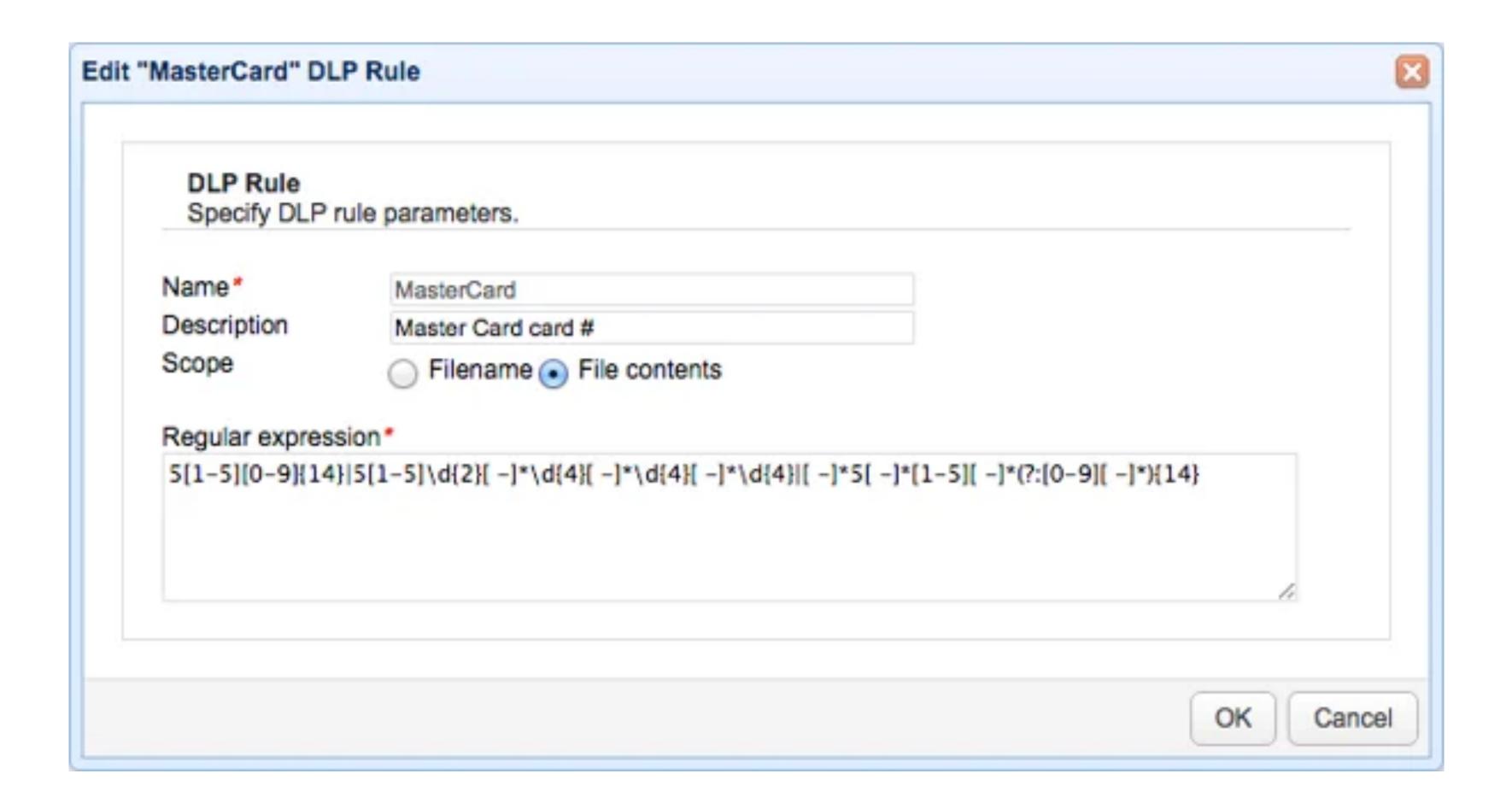


Restore sensitive info

Receive responses

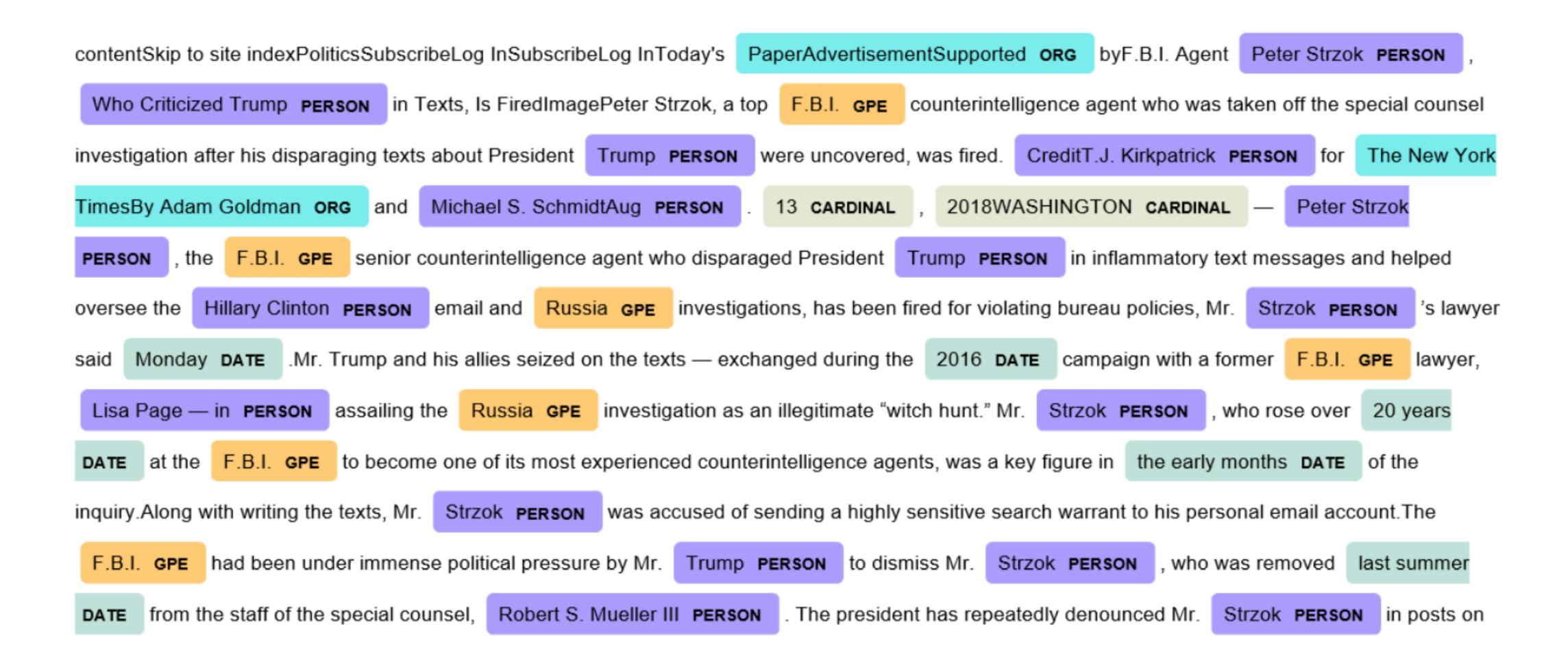
Related Work

Data Leak Prevention — Regex Rules



Related Work

Data Leak Prevention — Named Entity Recognition



Challenges

#1 Open-vocabulary & #2 Context-dependent

PII

Personal information

Financial data

Business secrets

.

Challenge #1

Challenges

#1 Open-vocabulary & #2 Context-dependent

PII

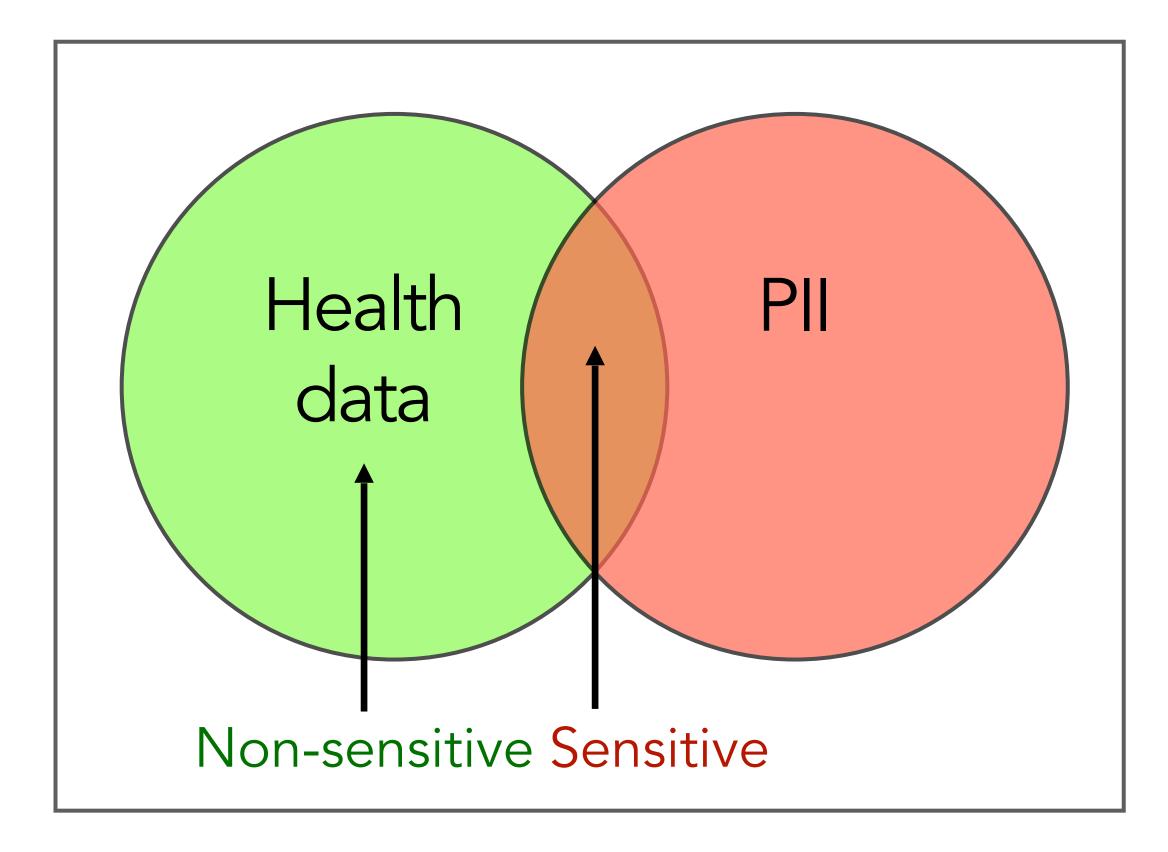
Personal information

Financial data

Business secrets

.

Challenge #1



Challenge #2

Method

Understanding Privacy Leaks in LLM Prompts

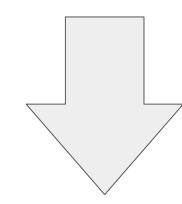
50K real-world conversations

10K sensitive prompts

Please write a summary report from the meeting note below ABC Company.

- Q4 production growth rate should be over 20% YoY.
- Reallocate the chips from APAC to other markets.
- •

300 prompts

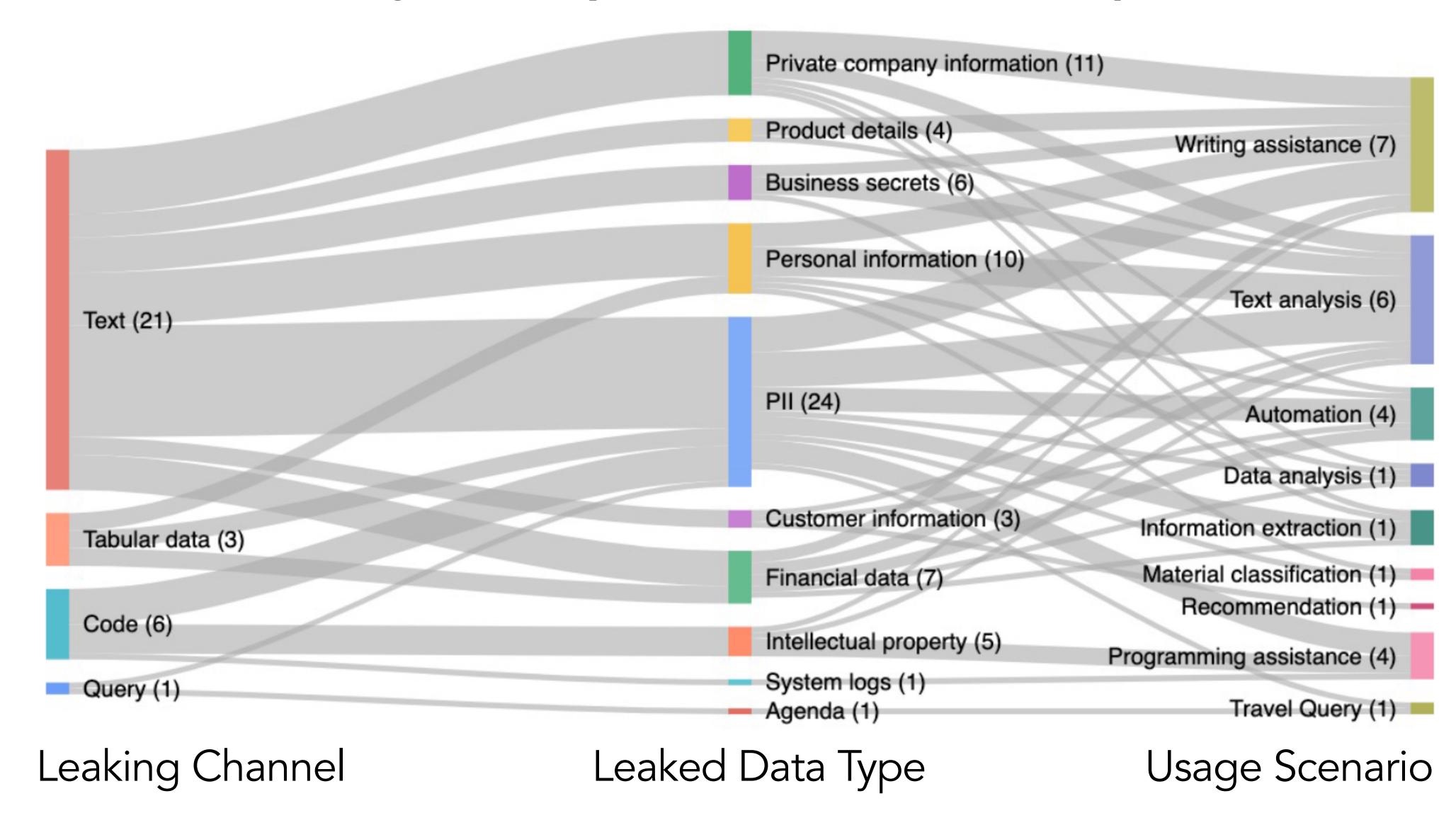


4 data leak channels10 leaked data types9 usage scenarios

Check details in our paper

Results

Understanding Privacy Leaks in LLM Prompts



Use Case

Policy Representation

- Type-based: e.g., personal_name
- Value-based: e.g., "123-45-6789" for the SSN
- Context-based: e.g., when health data co-exists with "personal name" in the same prompt

Obfuscation Method

Policy Representation

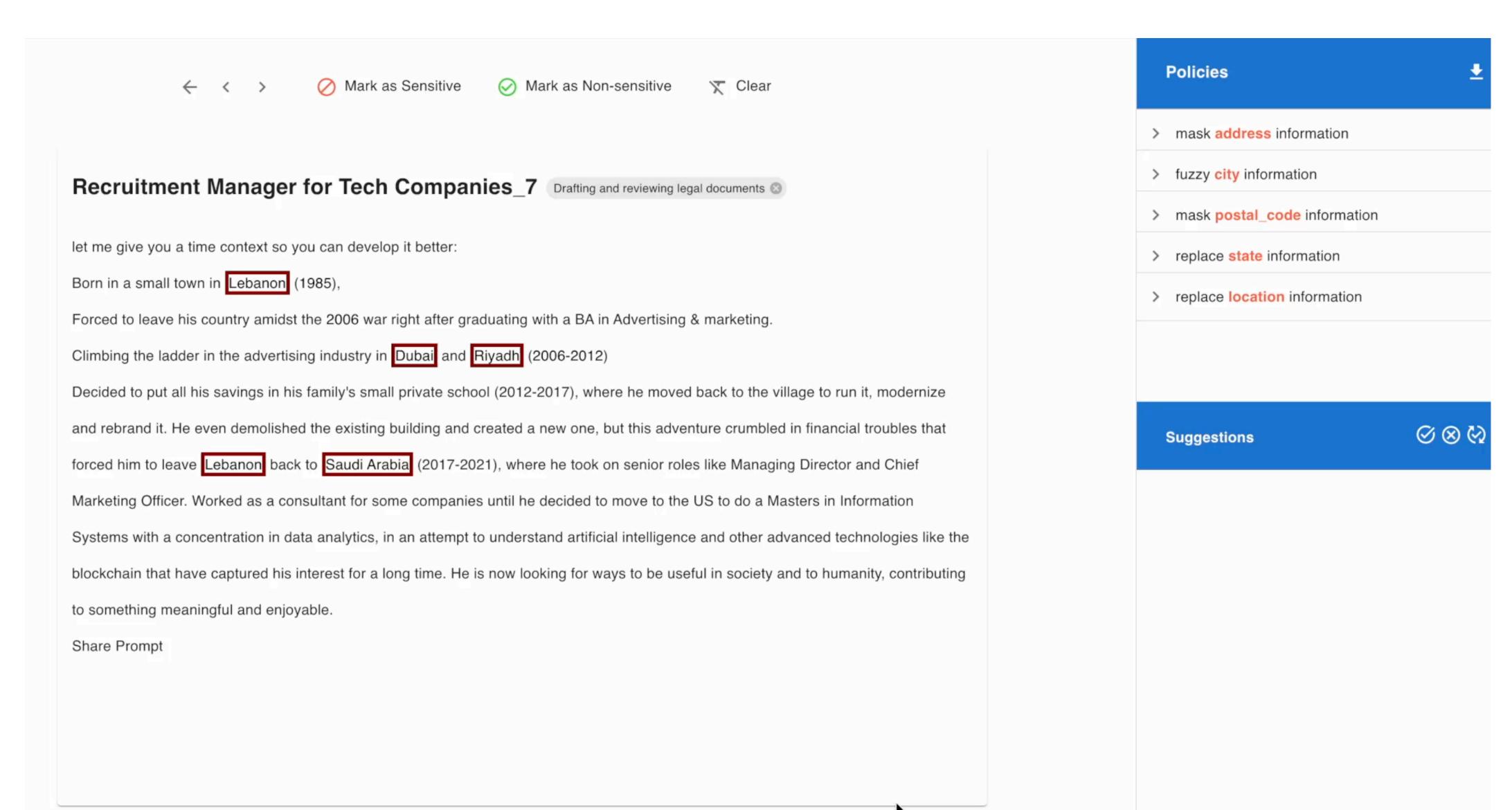
• Noisify: "\$10,000" → "\$12,000"

• Fuzzify: "28 years old" → "late 20s"

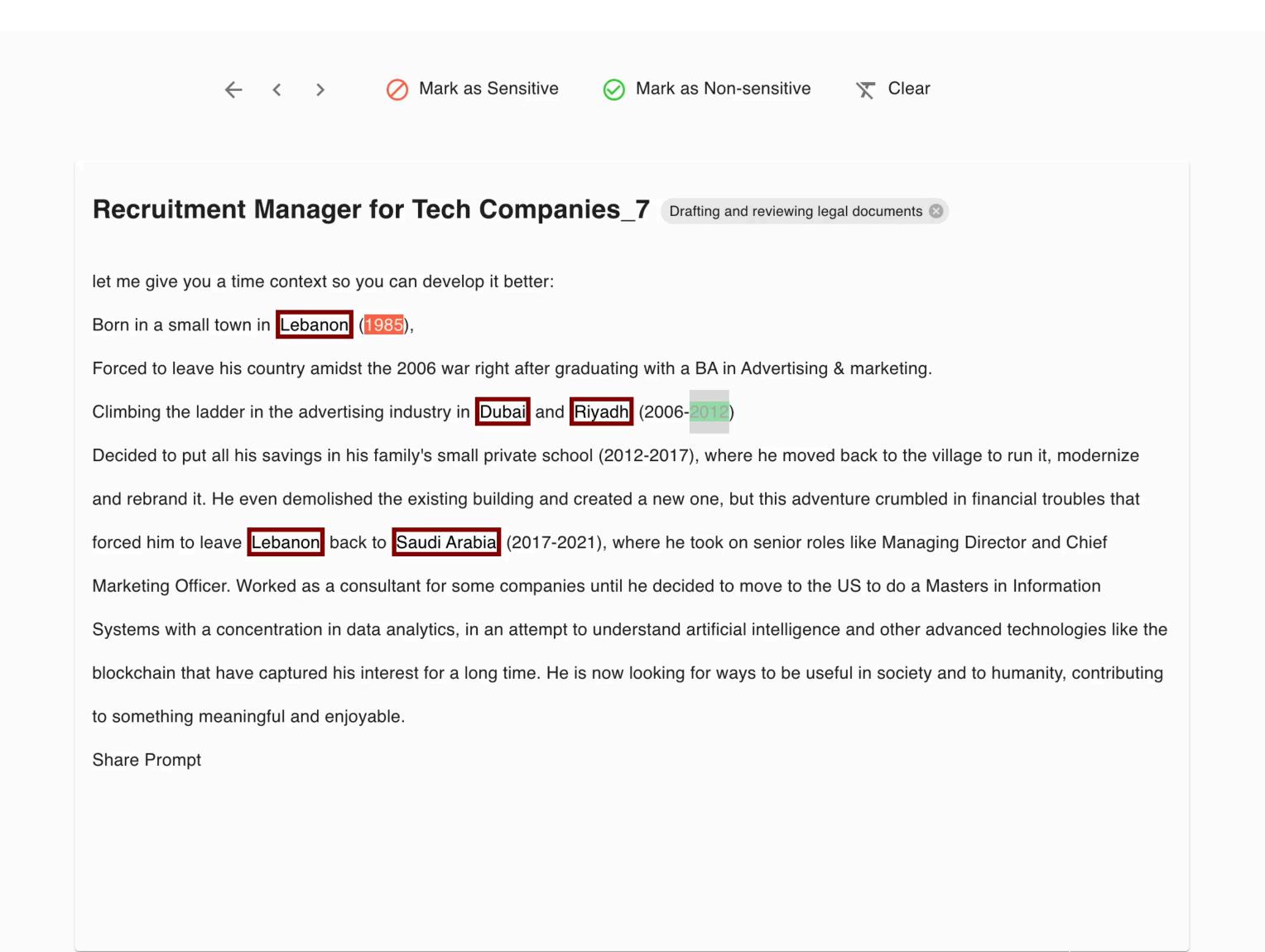
Mask: "1234-5678" → "XXXXX-XXXX"

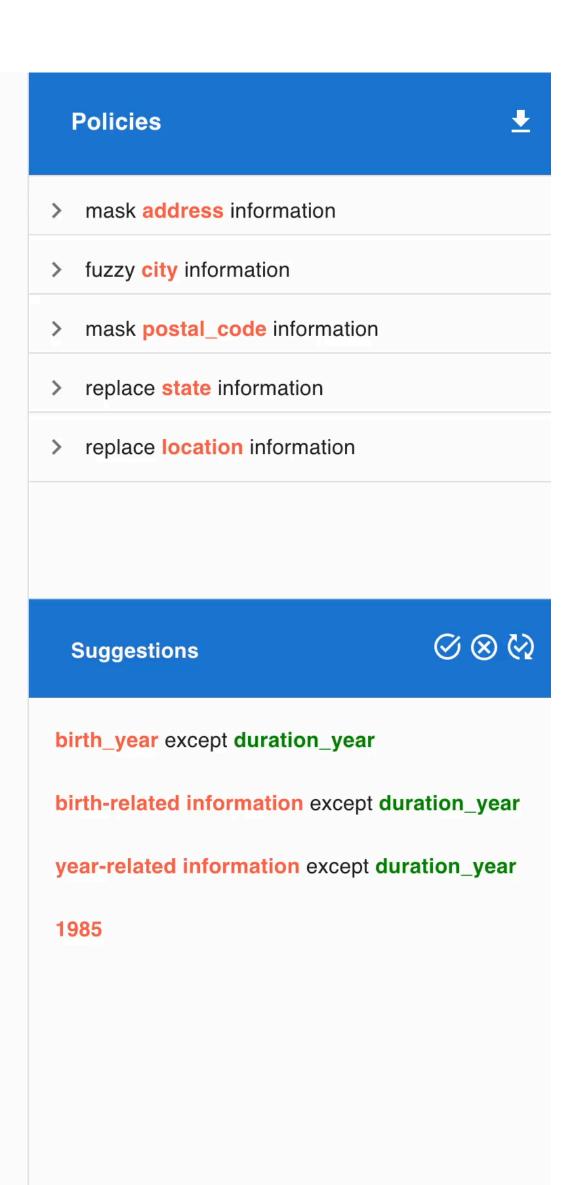
Replace: "John Doe" → "Jane Smith"

Annotating Data Leaks with Positive and Negative Examples

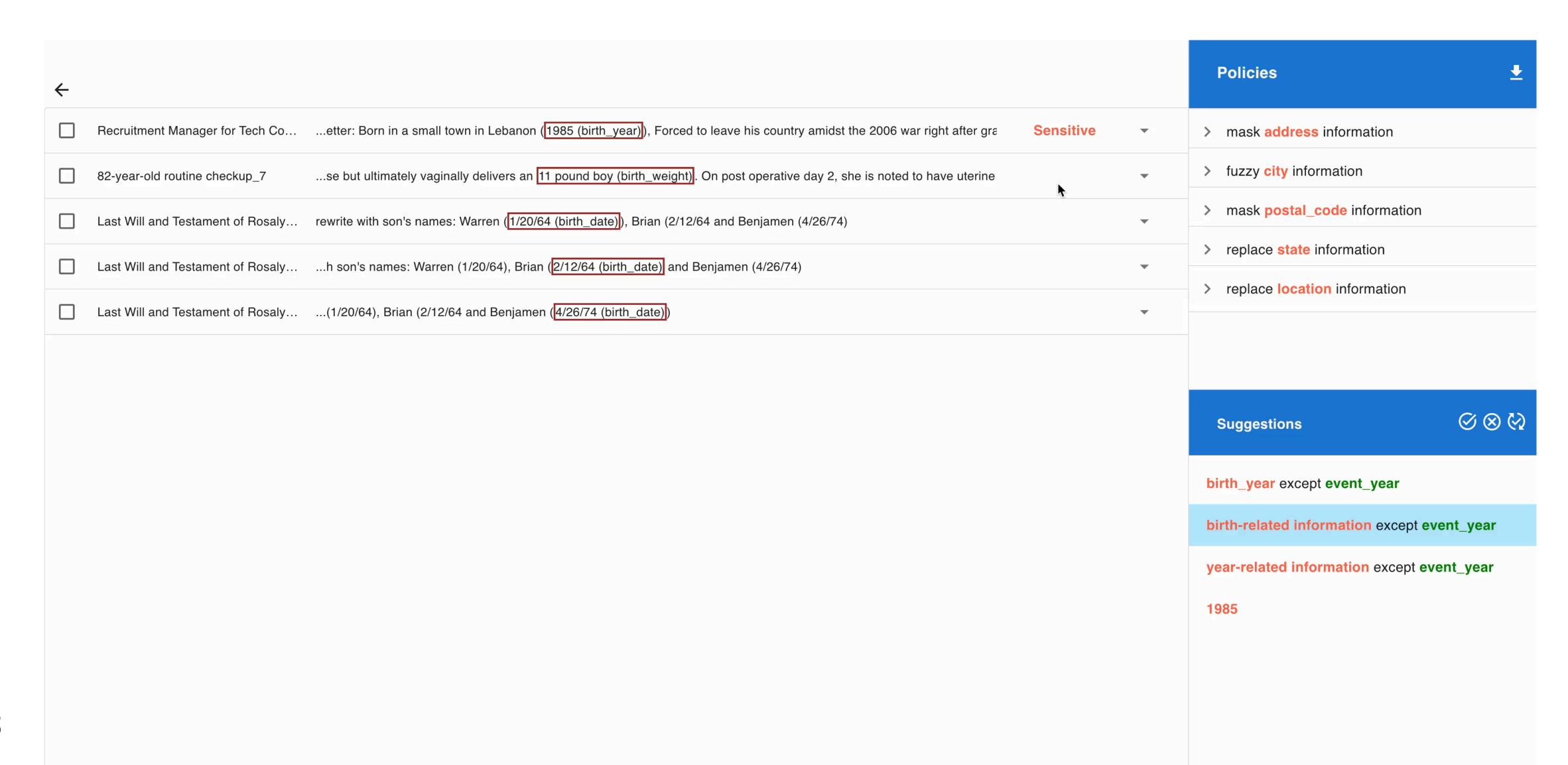


Policy Validation on Sample Prompts





Iterating Policies with Real-time Feedback



Evaluation

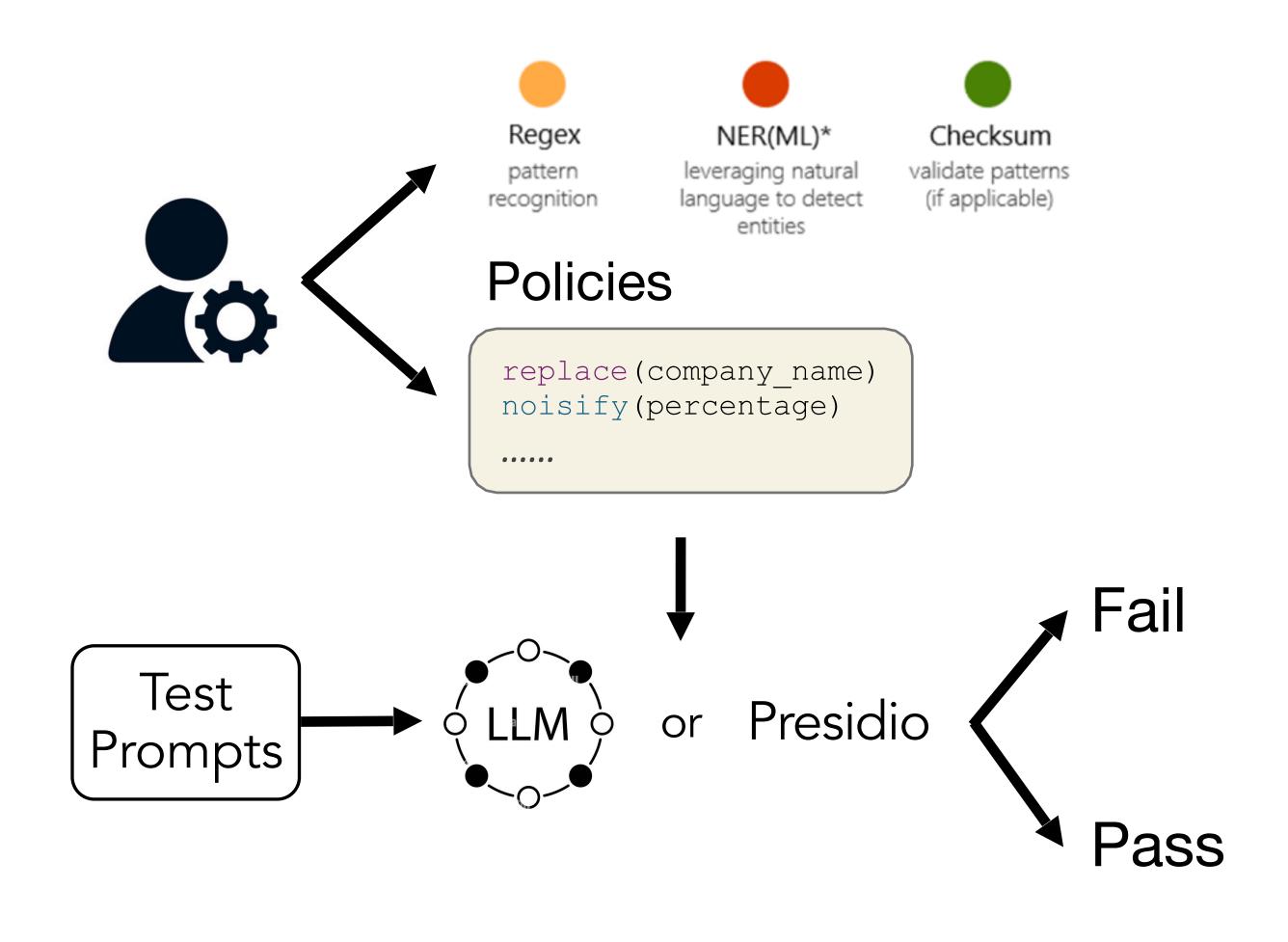
- 1. Effectiveness in identifying sensitive information
- 2. Policy usability for admins
- 3. Mitigation of inference attacks
- 4. Impact on response quality
- 5. System performance

Check details in our paper

Method

Policy Usability for Admins

Presidio Detection Flow



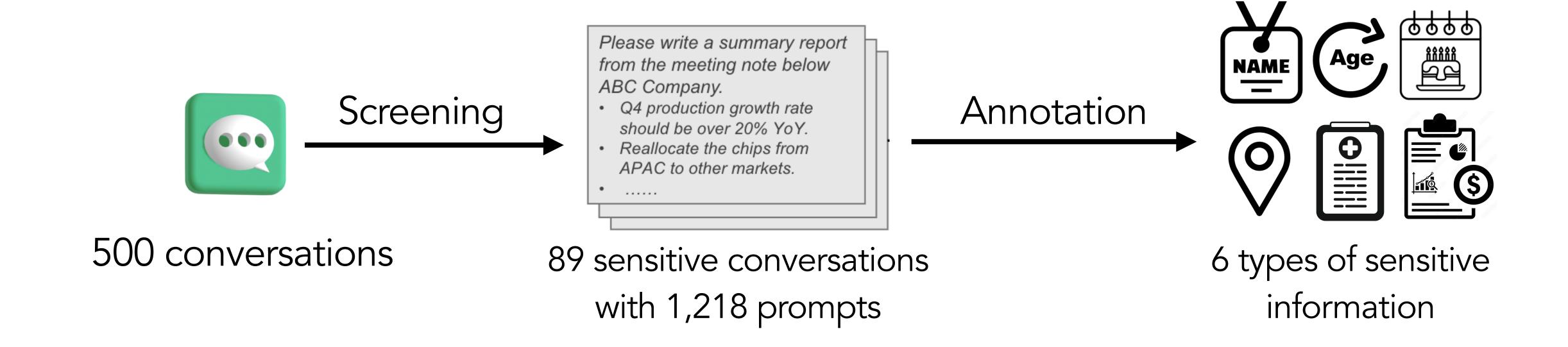
12 participants

Author policies for 6 tasks

10 unit test prompts

Dataset

Policy Usability for Admins



- Quasi-identifiers
- Personal Identifier Information (PII)
- Sensitive Data

Results

Policy Usability for Admins

1.6 v.s. 5.0 minutes

for a single policy

Precision: **84% v.s. 55%**

Recall: 76% v.s 54%

Task	Presidio					GPTWall				
	Time (min)	#Rule	#Success	Precision	Recall	Time (min)	#Policy	#Success	Precision	Recall
Name	4.49 ±2.94	1.0	6	63.69%	86.52%	10.50±4.00	4.0	6	77.41%	87.80%
Location	12.80±7.23	1.4	3	67.78%	35.88%	12.52 ±7.82	3.8	5	82.98%	68.29%
Birthdate	11.72±5.75	1.7	2	49.71%	55.10%	7.52 ±4.93	2.7	5	98.33%	97.57%
Age	12.21±7.76	2.4	3	73.71%	36.83%	4.38 ±3.32	1.2	6	93.73%	97.95%
Financial	9.25 ± 4.22	2.0	3	37.79%	54.55%	12.35±6.08	11.3	6	52.37%	85.98%
Health	13.22±7.86	4.4	5	50.12%	63.89%	9.21 ±1.50	12.2	6	83.88%	61.19%
Average	10.61±6.54	2.1	3.7	54.60%	53.98%	9.42 ±5.48	5.9	5.7	83.91%	76.17%

GPTWall: a policy-based data leak management system

- (1) Conventional solutions are insufficient for open-vocabulary data leaks
- (2) Introduce a man-in-the-middle edge LLM service
- (3) Help admins create policies through programming by example

Qiyu Li qiyuli@ucsd.edu

